skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Moffat‐Griffin, T"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Meteoroids of sub‐milligram sizes burn up high in the Earth's atmosphere and cause streaks of plasma trails detectable by meteor radars. The altitude at which these trails, or meteors, form depends on a number of factors including atmospheric density and the astronomical source populations from which these meteoroids originate. A previous study has shown that the altitude of these meteors is affected by long‐term linear trends and the 11‐year solar cycle related to changes in our atmosphere. In this work, we examine how shorter diurnal and seasonal variations in the altitude distribution of meteors are dependent on the geographical location at which the measurements are performed. We use meteoroid altitude data from 18 independent meteor radar stations at a broad range of latitudes and investigate whether there are local time (LT) and seasonal variations in the altitude of the peak meteor height, defined as the majority detection altitude of all meteors within a certain period, which differ from those expected purely from the variation in the visibility of their astronomical source. We find a consistent LT and seasonal response for the Northern Hemisphere locations regardless of latitude. However, the Southern Hemisphere locations exhibit much greater LT and seasonal variation. In particular, we find a complex response in the four stations located within the Southern Andes region, which indicates that the strong dynamical atmospheric activity, such as the gravity waves prevalent here, disrupts, and masks the seasonality and dependence on the astronomical sources. 
    more » « less
    Free, publicly-accessible full text available November 16, 2025
  2. Abstract An unusual sudden stratospheric warming (SSW) event occurred in the Southern Hemisphere in September 2019. Ground‐based and satellite observations show the presence of transient eastward‐ and westward‐propagating quasi‐10 day planetary waves (Q10DWs) during the SSW. The planetary wave activity maximizes in the mesosphere and lower thermosphere region approximately 10 days after the SSW onset. Analysis indicates that the westward‐propagating Q10DW with zonal wave numbers = 1 is mainly symmetric about the equator, which is contrary to theory which predicts the presence of an antisymmetric normal mode for such planetary wave. Observations from microwave limb sounder and sounding of the atmosphere using broadband emission radiometry are combined with meteor radar wind measurements from Antarctica, providing a comprehensive view of Q10DW wave activity in the Southern Hemisphere during this SSW. Analysis suggests that the Q10DWs of various wavenumbers are potentially excited from nonlinear wave‐wave interactions that also involve stationary planetary waves withs = 1 ands = 2. The Q10DWs are also found to couple the ionosphere with the neutral atmosphere. The timing of the quasi‐10‐day oscillations (Q10DOs) in the ionosphere are contemporaneous with the Q10DWs in the neutral atmosphere during a period of relatively low solar and geomagnetic activity, suggesting that the Q10DWs play a key role in driving the ionospheric Q10DOs during the Southern SSW event. This study provides observational evidence for coupling between the neutral atmosphere and ionosphere through the upward propagation of global scale planetary waves. 
    more » « less